Clinical Cases with OCT-Angiography

AngioScan

Daniela Bacherini
Andrea Sodi
Stanislao Rizzo
<table>
<thead>
<tr>
<th>CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authors</td>
</tr>
<tr>
<td>Introduction</td>
</tr>
<tr>
<td>Case 1 Neovascular Age-related Macular Degeneration (AMD) - Type I Choroidal Neovascularization (CNV)</td>
</tr>
<tr>
<td>Case 2 Neovascular Age-related Macular Degeneration (AMD) - Type II Choroidal Neovascularization (CNV)</td>
</tr>
<tr>
<td>Case 3 Retinal Angiomatous Proliferation (RAP) - Type III Choroidal Neovascularization (CNV)</td>
</tr>
<tr>
<td>Case 4 Neovascular Age-related Macular Degeneration (AMD) - CNV mixed type: Type I + Type II</td>
</tr>
<tr>
<td>Case 5 Neovascular Age-related Macular Degeneration (AMD) - Follow Up after Anti-VEGF Treatment</td>
</tr>
<tr>
<td>Case 6 Atrophic Age-related Macular Degeneration (AMD)</td>
</tr>
<tr>
<td>Case 7 Myopic Choroidal Neovascularization (CNV)</td>
</tr>
<tr>
<td>Case 8 Angioid Streaks associated with Choroidal Neovascularization (CNV)</td>
</tr>
<tr>
<td>Case 9 Advanced Stage Retinitis Pigmentosa (RP)</td>
</tr>
<tr>
<td>Case 10 Stargardt (STGD) Disease</td>
</tr>
<tr>
<td>Case 11 X-Linked Retinoschisis</td>
</tr>
<tr>
<td>Case 12 Choroidal Osteoma complicated by Choroidal Neovascularization (CNV)</td>
</tr>
<tr>
<td>Case 13 Branch Retinal Vein Occlusion (BRVO)</td>
</tr>
<tr>
<td>Case 14 Proliferative Diabetic Retinopathy (DR)</td>
</tr>
</tbody>
</table>

AUTHORS

Daniela Bacherini
Andrea Sodi
Stanislao Rizzo

Department of Surgery and Translational Medicine
Ophthalmology, Careggi University Hospital
University of Florence, Italy
Fondazione Policlinico Universitario Agostino Gemelli / Università del Sacro Cuore, Rome, Italy

Dr. Daniela Bacherini, MD, is completing her Research Doctorate at the Department of Ophthalmology, Careggi University Hospital, University of Florence, Italy. Her clinical and research activities are focused on medical retina with a special interest in retinal imaging, uveitis and retinal dystrophies.

Dr. Andrea Sodi, MD, is from the Department of Ophthalmology, Careggi University Hospital, Florence, Italy. His clinical and research activities are focused on medical retina with a special interest in retinal vascular disorders and retinal dystrophies.

Prof. Stanislao Rizzo, MD, is the chairman of Department of Ophthalmology, Fondazione Policlinico Universitario Agostino Gemelli / Università del Sacro Cuore, Rome, Italy. He is a vitreoretinal surgeon and his clinical and research activities are mainly focused on retinal diseases and vitreoretinal surgery.
CONTENTS

Authors ___ 3

Introduction ___ 4

Case 1 Neovascular Age-related Macular Degeneration (AMD) - Type I Choroidal Neovascularization (CNV) _______________ 6
Case 2 Neovascular Age-related Macular Degeneration (AMD) - Type II Choroidal Neovascularization (CNV) _______________ 7
Case 3 Retinal Angiomatous Proliferation (RAP) - Type III Choroidal Neovascularization (CNV) ______________ 8
Case 4 Neovascular Age-related Macular Degeneration (AMD) - CNV mixed type: Type I + Type II _______________ 9
Case 5 Neovascular Age-related Macular Degeneration (AMD) - Follow Up after Anti-VEGF Treatment _______________ 10
Case 6 Atrophic Age-related Macular Degeneration (AMD) _______________ 11
Case 7 Myopic Choroidal Neovascularization (CNV) ________________ 12
Case 8 Angioid Streaks associated with Choroidal Neovascularization (CNV) _______________ 13
Case 9 Advanced Stage Retinitis Pigmentosa (RP) ________________ 14
Case 10 Stargardt (STGD) Disease _______________ 15
Case 11 X-Linked Retinoschisis _______________ 16
Case 12 Choroidal Osteoma complicated by Choroidal Neovascularization (CNV) _______________ 17
Case 13 Branch Retinal Vein Occlusion (BRVO) _______________ 18
Case 14 Proliferative Diabetic Retinopathy (DR) _______________ 19

AUTHORS

Daniela Bacherini
Andrea Sodi
Stanislao Rizzo

Department of Surgery and Translational Medicine
Ophthalmology, Careggi University Hospital
University of Florence, Italy
Fondazione Polyclinico Universitario Agostino Gemelli / Università del Sacro Cuore, Rome, Italy

Dr. Daniela Bacherini, MD, is completing her Research Doctorate at the Department of Ophthalmology, Careggi University Hospital, University of Florence, Italy. Her clinical and research activities are focused on medical retina with a special interest in retinal imaging, uveitis and retinal dystrophies.

Dr. Andrea Sodi, MD, is from the Department of Ophthalmology, Careggi University Hospital, Florence, Italy. His clinical and research activities are focused on medical retina with a special interest in retinal vascular disorders and retinal dystrophies.

Prof. Stanislao Rizzo, MD, is the chairman of Department of Ophthalmology, Fondazione Polyclinico Universitario Agostino Gemelli / Università del Sacro Cuore, Rome, Italy. He is a vitreoretinal surgeon and his clinical and research activities are mainly focused on retinal diseases and vitreoretinal surgery.
INTRODUCTION

Basic Principle of OCT-Angiography

OCT-Angiography (OCT-A) is a non-invasive imaging technique for the retinal and choroidal vasculature and microvasculature. OCT-A uses the principle of "motion contrast" for the detection of blood flow. To generate the images, multiple cross-sectional scans (B-scans) are acquired at the same retinal location over a short time interval. Motion (moving structure such as blood flow) will cause slight differences between these repeated scans. However, if there is no motion contrast, the repeated scans will produce almost the same signal (Fig. 1). On the B-scan image above, the signal generated by blood flow is represented in red (Fig. 2). The volumetric 3D dataset from the whole OCT-A scan can be rendered to reconstruct En face OCT-A images representing the vasculature at different depths within the retina and choroid (Fig. 3a).

Features of OCT-Angiography

OCT-A does not require an injection of contrast dye, hence it can be performed in patients who require regular follow up without risk of adverse effects of repeated use of dye. Another feature is the ability to perform a layer-by-layer analysis of the vasculature with a 3-dimensional (3D) approach; the entire retina, Vitreous, Superficial, Deep, Outer retina, ORCC, Choriocapillaris and Choroid (Fig. 3b). OCT-A can provide information on the exact location and extent of choroidal neovascularization (CNV) or non-perfusion area (NPA) for diagnosing AMD or DR. These features are some of the advantages of OCT-A over fluorescein angiography (FA) or indocyanine green angiography (ICG).

CODAA (Complex OCT signal Difference Analysis Angiography)

NIDEK's proprietary motion contrast algorithm "CODAA" detects blood flow by calculating both phase and amplitude variation of the OCT signal over time. The CODAA approach ensures higher sensitivity generating greater image details including microcirculation such as capillary rings.
INTRODUCTION

Basic Principle of OCT-Angiography
OCT-Angiography (OCT-A) is a non-invasive imaging technique for the retinal and choroidal vasculature and microvasculature. OCT-A uses the principle of "motion contrast" for the detection of blood flow. To generate the images, multiple cross-sectional scans (B-scans) are acquired at the same retinal location over a short time interval. Motion (moving structure such as blood flow) will cause slight differences between these repeated scans. However, if there is no motion contrast, the repeated scans will produce almost the same signal (Fig. 1). On the B-scan image above, the signal generated by blood flow is represented in red (Fig. 2). The volumetric 3D dataset from the whole OCT-A scan can be rendered to reconstruct En face OCT-A images representing the vasculature at different depths within the retina and choroid (Fig. 3a).

Features of OCT-Angiography
OCT-A does not require an injection of contrast dye, hence it can be performed in patients who require regular follow up without risk of adverse effects of repeated use of dye. Another feature is the ability to perform a layer-by-layer analysis of the vasculature with a 3-dimensional (3D) approach; the entire retina, Vitreous, Superficial, Deep, Outer retina, ORCC, Choriocapillaris and Choroid (Fig. 3b). OCT-A can provide information on the exact location and extent of choroidal neovascularization (CNV) or non-perfusion area (NPA) for diagnosing AMD or DR. These features are some of the advantages of OCT-A over fluorescein angiography (FA) or indocyanine green angiography (ICG). However, image interpretation of OCT-A differs from FA/ICG because the imaging principles differ. Leakage, pooling or staining regions are normally not detected by OCT-A as they generally do not present enough "motion" to be imaged.

CODAA (Complex OCT signal Difference Analysis Angiography)
NIDEK’s proprietary motion contrast algorithm “CODAA” detects blood flow by calculating both phase and amplitude variation of the OCT signal over time. The CODAA approach ensures higher sensitivity generating greater image details including microcirculation such as capillary rings.
Case 1

Neovascular Age-related Macular Degeneration (AMD) - Type I Choroidal Neovascularization (CNV)

Fig. 1a: The Scanning Laser Ophthalmoscope (SLO) fundus image shows some areas of increased reflectivity with a central hypo-reflective area.

Fig. 1b: The structural OCT B-scan shows a retinal pigment epithelium (RPE) elevation associated with significant thickening of the ellipsoid zone and subtle subretinal fluid.

Fig. 2a: Normal superficial capillary plexus (SCP)

Fig. 2b: Normal deep capillary plexus (DCP)

Fig. 2c: OCT-Angiography (Outer Retina)

Fig. 2d: OCT-Angiography (Choroid)

- **OCT-Angiography: AngioScan Images**
 - Fig. 2a: Normal superficial capillary plexus (SCP)
 - Fig. 2b: Normal deep capillary plexus (DCP)
 - Fig. 2c: No signs of abnormal vascularization in the outer retina.
 - Fig. 2d: A large wheel-shaped vascular network is present at the choroidal level. A large central trunk is visible with branches radiating in all directions.

The Type I CNV with new vessels located beneath the RPE has been previously referred to as occult CNV.

Case 2

Neovascular Age-related Macular Degeneration (AMD) - Type II Choroidal Neovascularization (CNV)

Fig. 1a: SLO fundus image of a hypo-reflective halo corresponding to intraretinal fluid in the macular region.

Fig. 1b: The structural OCT B-scan shows intraretinal cystoid spaces. A subfoveal hyper-reflective thickening is present in the outer retina above the RPE (blue arrow).

Fig. 2a: OCT-Angiography (SCP)

Fig. 2b: OCT-Angiography (DCP)

Fig. 2c: OCT-Angiography (Outer Retina)

Fig. 2d: OCT-Angiography (Choroid)

- **OCT-Angiography: AngioScan Images**
 - Fig. 2a: Normal superficial capillary plexus (SCP)
 - Fig. 2b: Deep capillary plexus (DCP) with some darker areas of no flow corresponding to multiple cysts (blue arrows).
 - Fig. 2c: A large coral-shaped CNV with multiple branches in the outer retina.
 - Fig. 2d: The choroidal slab shows the origin of the CNV surrounded by a dark halo.

The Type II CNV with pre-epithelial new vessels growing into the subretinal space corresponds to classic CNV.
Case 1
Neovascular Age-related Macular Degeneration (AMD) - Type I Choroidal Neovascularization (CNV)

Fig. 1a: The Scanning Laser Ophthalmoscope (SLO) fundus image shows some areas of increased reflectivity with a central hypo-reflective area.

Fig. 1b: The structural OCT B-scan shows a retinal pigment epithelium (RPE) elevation associated with significant thickening of the ellipsoid zone and subtle subretinal fluid.

Fig. 2a: Normal superficial capillary plexus (SCP)
Fig. 2b: Normal deep capillary plexus (DCP)
Fig. 2c: No signs of abnormal vascularization in the outer retina.
Fig. 2d: A large wheel-shaped vascular network is present at the choroidal level. A large central trunk is visible with branches radiating in all directions.

The Type I CNV with new vessels located beneath the RPE has been previously referred to as occult CNV.

Case 2
Neovascular Age-related Macular Degeneration (AMD) - Type II Choroidal Neovascularization (CNV)

Fig. 1a: SLO fundus image of a hypo-reflective halo corresponding to intraretinal fluid in the macular region.
Fig. 1b: The structural OCT B-scan shows intraretinal cystoid spaces. A subfoveal hyper-reflective thickening is present in the outer retina above the RPE (blue arrow).

Fig. 2a: Normal superficial capillary plexus (SCP)
Fig. 2b: Deep capillary plexus (DCP) with some darker areas of no flow corresponding to multiple cysts (blue arrows).
Fig. 2c: A large coral-shaped CNV with multiple branches in the outer retina.
Fig. 2d: The choroidal slab shows the origin of the CNV surrounded by a dark halo.

The Type II CNV with pre-epithelial new vessels growing into the subretinal space corresponds to classic CNV.
Case 3
Retinal Angiomatous Proliferation (RAP)
- Type III Choroidal Neovascularization (CNV)

Fig. 1a: The SLO fundus image shows a speckled focal increase of reflectivity in the macular area.
Fig. 1b: The structural OCT B-scan shows outer retina disruption and an elevation of the underlying RPE associated with subtle subretinal fluid and an intraretinal cyst.

Fig. 2a: OCT-Angiography (SCP)
Fig. 2b: OCT-Angiography (DCP)
Fig. 2c: OCT-Angiography (Outer Retina)
Fig. 2d: OCT-Angiography (Choroid)

Case 4
Neovascular Age-related Macular Degeneration (AMD)
- CNV mixed type: Type I + Type II

Fig. 1a: The SLO fundus picture shows a combination of hypo- and hyper-reflective alterations in the macular area.
Fig. 1b: The structural OCT B-scan shows thickening of neurosensory retina with subretinal fluid. An irregular elevation of RPE extends under the macula associated with disorganization of the outer retinal layer and subretinal hyper-reflective thickening.

Fig. 2a: OCT-Angiography (Outer Retina)
Fig. 2b: OCT-Angiography (Choroid)

OCT-Angiography: AngioScan Images
Fig. 2a: Normal superficial capillary plexus (SCP)
Fig. 2b: The DCP image shows a small high-flow round lesion that seems to extend downwards into the outer retina (retinal-retinal anastomosis, Fig. 2c) and the choriocapillaris (Fig. 2d) where a corresponding small glomerular lesion within a large dark halo is present.

OCT-Angiography: AngioScan Images
Fig. 2a: An abnormal flow signal is present in the outer retina, representing the pre-epithelial (Type II) neovascular network.
Fig. 2b: In the choroidal slab, OCT-A reveals an additional sub-epithelial (Type I) network with radiating vessels branching from the center to the periphery and rare vascular loops in the periphery of the lesion.
Case 3
Retinal Angiomatous Proliferation (RAP) - Type III Choroidal Neovascularization (CNV)

Fig. 1a: The SLO fundus image shows a speckled focal increase of reflectivity in the macular area.
Fig. 1b: The structural OCT B-scan shows outer retina disruption and an elevation of the underlying RPE associated with subtle subretinal fluid and an intraretinal cyst.

Fig. 2a: Normal superficial capillary plexus (SCP)
Fig. 2b: The DCP image shows a small high-flow round lesion that seems to extend downwards into the outer retina (retinal-retinal anastomosis, Fig. 2c) and the choriocapillaris (Fig. 2d) where a corresponding small glomerular lesion within a large dark halo is present.

Case 4
Neovascular Age-related Macular Degeneration (AMD) - CNV mixed type: Type I + Type II

Fig. 1a: The SLO fundus picture shows a combination of hypo- and hyper-reflective alterations in the macular area.
Fig. 1b: The structural OCT B-scan shows thickening of neurosensory retina with subretinal fluid. An irregular elevation of RPE extends under the macula associated with disorganization of the outer retinal layer and subretinal hyper-reflective thickening.

Fig. 2a: An abnormal flow signal is present in the outer retina, representing the pre-epithelial (Type II) neovascular network.
Fig. 2b: In the choroidal slab, OCT-A reveals an additional sub-epithelial (Type I) network with radiating vessels branching from the center to the periphery and rare vascular loops in the periphery of the lesion.
Case 5
Neovascular Age-related Macular Degeneration (AMD) - Follow Up after Anti-VEGF Treatment

Fig. 1a: The SLO fundus image shows hyper-reflective macular alterations corresponding to atrophic changes.
Fig. 1b: The structural OCT B-scan reveals rare intraretinal microcysts and subretinal fluid. Hyper-reflective thickening below the retinal cysts is evident. Atrophic changes are also visible.

PRE-TREATMENT

POST-TREATMENT

OCT-Angiography: AngioScan Images

Fig. 2a/2b: A neovascular membrane with a main trunk and numerous finely anastomosed peripheral branches are present in the outer retina. Atrophic changes are visible in the choroid.

Fig. 2c/2d: The vascular network decreased significantly after intravitreal anti-VEGF treatment. The main trunk seems to be reduced while the smaller and peripheral branches (blue arrows) disappeared completely.

Case 6
Atrophic Age-related Macular Degeneration (AMD)

Fig. 1a: The SLO fundus image shows the Geographic Atrophy (GA) as a well-demarcated wide hyper-reflective area, with a circumscribed central foveal sparing.
Fig. 1b: The structural OCT B-scan shows macular thinning with RPE loss causing increased OCT signal intensity below Bruch’s Membrane (Hyper-transmission).

OCT-Angiography: AngioScan Images

Fig. 2: The 5.4 x 5.4 mm choroidal slab shows the increased visibility of the large choroidal vessels below the atrophic area with complete absence of choriocapillaris.
Fig. 3: The En face choroidal image outlines the shape of GA determined by the hyper-transmission through the atrophic RPE into the choroid.
Case 5
Neovascular Age-related Macular Degeneration (AMD) - Follow Up after Anti-VEGF Treatment

Case 6
Atrophic Age-related Macular Degeneration (AMD)

Fig. 1a: The SLO fundus image shows hyper-reflective macular alterations corresponding to atrophic changes.

Fig. 1b: The structural OCT B-scan reveals rare intraretinal microcysts and subretinal fluid. Hyper-reflective thickening below the retinal cysts is evident. Atrophic changes are also visible.

OCT-Angiography: AngioScan Images

Fig. 2a/2b: A neovascular membrane with a main trunk and numerous finely anastomosed peripheral branches are present in the outer retina. Atrophic changes are visible in the choroid.

Fig. 2c/2d: The vascular network decreased significantly after intravitreal anti-VEGF treatment. The main trunk seems to be reduced while the smaller and peripheral branches (blue arrows) disappeared completely.

PRE-TREATMENT

POST-TREATMENT

Fig. 1a: The SLO fundus image shows the Geographic Atrophy (GA) as a well-demarcated wide hyper-reflective area, with a circumscribed central foveal sparing.

Fig. 1b: The structural OCT B-scan shows macular thinning with RPE loss causing increased OCT signal intensity below Bruch’s Membrane (Hyper-transmission).

Fig. 2: The 5.4 x 5.4 mm choroidal slab shows the increased visibility of the large choroidal vessels below the atrophic area with complete absence of choriocapillaris.

Fig. 3: The En face choroidal image outlines the shape of GA determined by the hyper-transmission through the atrophic RPE into the choroid.
Case 7
Myopic Choroidal Neovascularization (CNV)

Fig. 1a: SLO
Fig. 1b: OCT B-scan

The SLO fundus image shows the typical tessellated appearance with the peripapillary and posterior atrophy due to pathological myopia.

Fig. 1b: The structural OCT B-scan shows a subfoveal hyper-reflective lesion corresponding to the CNV (blue arrow).

PRE-TREATMENT

POST-TREATMENT

OCT-Angiography: AngioScan Images

Fig. 2a/2b: The OCT-A confirms the presence of an active myopic neovascular membrane present in the outer retina slab (Type II CNV).

Fig. 2c/2d: After anti-VEGF treatment, the vascular network in the outer retina completely disappeared. In this patient, new vessels cannot be clearly detected in the choroid, where atrophic changes predominate.

Case 8
Angioid Streaks associated with Choroidal Neovascularization (CNV)

Fig. 1a: SLO
Fig. 1b: OCT B-scan

Fig. 1a: SLO fundus image of a fibrotic CNV complicating an eye with angioid streaks in a patient with pseudoxanthoma elasticum. Angioid streaks are not visible in this scan, whereas peau d’orange temporal to the posterior pole is well detected.

Fig. 1b: The structural OCT B-scan shows hyper-reflective subretinal thickening without contiguous subretinal fluid (only a chronic intraretinal cyst is visible) corresponding to advanced fibrotic CNV.

OCT-Angiography: AngioScan Images

Abnormal neovascular networks are visible in the outer retina (Fig. 2a) and choroid (Fig. 2b). Large major arterialized trunks are associated with long filamentous and poorly anastomosed vessels. This pattern is typical of quiescent CNV.
Case 7
Myopic Choroidal Neovascularization (CNV)

Fig. 1a: The SLO fundus image shows the typical tessellated appearance with the peripapillary and posterior atrophy due to pathological myopia.
Fig. 1b: The structural OCT B-scan shows a subfoveal hyper-reflective lesion corresponding to the CNV (blue arrow).

PRE-TREATMENT

OCT-Angiography: AngioScan Images

Fig. 2a: OCT-Angiography (Outer Retina)
Fig. 2b: OCT-Angiography (Choroid)

POST-TREATMENT

After anti-VEGF treatment, the vascular network in the outer retina completely disappeared. In this patient, new vessels cannot be clearly detected in the choroid, where atrophic changes predominate.

Case 8
Angioid Streaks associated with Choroidal Neovascularization (CNV)

Fig. 1a: SLO fundus image of a fibrotic CNV complicating an eye with angioid streaks in a patient with pseudoxanthoma elasticum. Angioid streaks are not visible in this scan, whereas peau d’orange temporal to the posterior pole is well detected.
Fig. 1b: The structural OCT B-scan shows hyper-reflective subretinal thickening without contiguous subretinal fluid (only a chronic intraretinal cyst is visible) corresponding to advanced fibrotic CNV.

OCT-Angiography: AngioScan Images

Abnormal neovascular networks are visible in the outer retina (Fig. 2a) and choroid (Fig. 2b). Large major arterialized trunks are associated with long filamentous and poorly anastomosed vessels. This pattern is typical of quiescent CNV.
Case 9
Advanced Stage Retinitis Pigmentosa (RP)

Fig. 1a: SLO fundus picture of a 40-year-old patient with advanced stage RP. The patient carries a RHO mutation associated with a dominant inheritance pattern.

Fig. 1b: The structural OCT B-scan reveals complete absence of the ellipsoid zone except for a surviving central island.

OCT-Angiography: AngioScan Images

Fig. 2: The 9 x 9 mm choroidal slab shows the large choroidal vessels due to extensive loss of RPE and choriocapillaris.

Case 10
Stargardt (STGD) Disease

Fig. 1a: SLO fundus of a large hyper-reflective area of macular atrophy in a patient affected by STGD disease carrying the pathogenic ABCA4 mutations.

Fig. 1b: The structural OCT B-scan image of decreased foveal thickness due to macular atrophy.

Fig. 2: 5.1 x 5.1 mm OCT-Angiography (Choroid)

Fig. 3: 5.1 x 5.1 mm En face (Choroid)

OCT-Angiography: AngioScan Images

Fig. 2: The 5.1 x 5.1 mm choroidal slab shows an optimal visualization of the large choroidal vessels and the borders of the atrophy from the extensive loss of the RPE and choriocapillaris layers.

Fig. 3: The extension of the atrophic area is confirmed by the related En face image.
Case 9

Advanced Stage Retinitis Pigmentosa (RP)

Fig. 1a: SLO fundus picture of a 40-year-old patient with advanced stage RP. The patient carries a RHO mutation associated with a dominant inheritance pattern.

Fig. 1b: The structural OCT B-scan reveals complete absence of the ellipsoid zone except for a surviving central island.

OCT-Angiography: AngioScan Images

Fig. 2: The 9 x 9 mm choroidal slab shows the large choroidal vessels due to extensive loss of RPE and choriocapillaris.

Case 10

Stargardt (STGD) Disease

Fig. 1a: SLO fundus of a large hyper-reflective area of macular atrophy in a patient affected by STGD disease carrying the pathogenic ABCA4 mutations.

Fig. 1b: The structural OCT B-scan image of decreased foveal thickness due to macular atrophy.

OCT-Angiography: AngioScan Images

Fig. 2: The 5.1 x 5.1 mm choroidal slab shows an optimal visualization of the large choroidal vessels and the borders of the atrophy from the extensive loss of the RPE and choriocapillaris layers.

Fig. 3: The extension of the atrophic area is confirmed by the related En face image.
Case 11

X-Linked Retinoschisis

Fig. 1a: SLO fundus image of a 13-year-old male with X-Linked Retinoschisis and carrying the pathogenic XLRS1 mutations. The image shows radiating hypo- and hyper-reflective areas.

Fig. 1b: The structural OCT B-scan shows splitting through multiple layers of the retina with foveal cysts.

Case 12

Choroidal Osteoma complicated by Choroidal Neovascularization (CNV)

Fig. 1a: SLO fundus image of a young male patient with Choroidal Osteoma with a roundish highly reflective central area.

Fig. 1b: The structural OCT B-scan shows a sponge-like hyper-reflectivity in the choroid associated with subretinal fluid and highly reflective speckles on the posterior surface of the detached neurosensory retina. A hyper-reflective area above Bruch’s Membrane with disruption of the outer retina is detectable.

OCT-Angiography: AngioScan Images

Fig. 2a: There are no relevant alterations in the superficial capillary plexus (SCP).

Fig. 2b: The foveal avascular zone (FAZ) is enlarged in the deep capillary plexus (DCP).

Fig. 2c: An abnormal flow signal in the outer retina indicates the presence of the CNV complicating the osteoma.

Fig. 2d: The choroidal slab shows a homogenous tumoral vascular network and the choroidal component of the CNV.
Case 11
X-Linked Retinoschisis

Fig. 1a: SLO fundus image of a 13-year-old male with X-Linked Retinoschisis and carrying the pathogenic XLRS1 mutations. The image shows radiating hypo- and hyper-reflective areas.

Fig. 1b: The structural OCT B-scan shows splitting through multiple layers of the retina with foveal cysts.

Fig. 2a: OCT-Angiography (SCP)
Fig. 2b: OCT-Angiography (DCP)

OCT-Angiography: AngioScan Images

Fig. 2a: The superficial capillary plexus (SCP) seems normal.
Fig. 2b: Cystoid spaces are present in the deep capillary plexus (DCP). The image corresponds well to the En face OCT image (Fig. 3b). The borders of the cystoid spaces show a clearly detectable flow signal which suggests good vascularization in these structures.

Case 12
Choroidal Osteoma complicated by Choroidal Neovascularization (CNV)

Fig. 1a: SLO fundus image of a young male patient with Choroidal Osteoma with a roundish highly reflective central area.

Fig. 1b: The structural OCT B-scan shows a sponge-like hyper-reflectivity in the choroid associated with subretinal fluid and highly reflective speckles on the posterior surface of the detached neurosensory retina. A hyper-reflective area above Bruch’s Membrane with disruption of the outer retina is detectable.

Fig. 2a: OCT-Angiography (SCP)
Fig. 2b: OCT-Angiography (DCP)
Fig. 2c: OCT-Angiography (Outer Retina)
Fig. 2d: OCT-Angiography (Choroid)

OCT-Angiography: AngioScan Images

Fig. 2a: There are no relevant alterations in the superficial capillary plexus (SCP).
Fig. 2b: The foveal avascular zone (FAZ) is enlarged in the deep capillary plexus (DCP).
Fig. 2c: An abnormal flow signal in the outer retina indicates the presence of the CNV complicating the osteoma.
Fig. 2d: The choroidal slab shows a homogenous tumoral vascular network and the choroidal component of the CNV.
Case 13
Branch Retinal Vein Occlusion (BRVO)

Fig. 1a: The SLO fundus image reveals microvascular abnormalities at the posterior pole.
Fig. 1b: The structural OCT B-scan of a patient with a longstanding superotemporal branch retinal vein occlusion shows cystoid macular edema.

Fig. 2a: 6 x 6 mm OCT-Angiography (SCP)
Fig. 2b: 6 x 6 mm OCT-Angiography (DCP)

Fig. 3a: 6 x 6 mm En face OCT (SCP)
Fig. 3b: 6 x 6 mm En face OCT (DCP)

OCT-Angiography: AngioScan Images
OCT-A highlights the well-demarcated regions of absent flow both at the superficial and deeper vascular plexus levels. Note the initial formation of an anastomosis with the deep vascular network and collateral circulation.

Fig. 3a/3b: The respective En face OCT images of the superficial and deep plexus.

Case 14
Proliferative Diabetic Retinopathy (DR)

Fig. 1a: The SLO image shows rare hypo-reflective lesions corresponding to retinal microaneurysms and small retinal hemorrhages.
Fig. 1b: The structural OCT B-scan shows no relevant morphologic alteration of the macular region.

Fig. 2a: OCT-Angiography (SCP)
Fig. 2b: OCT-Angiography (DCP)

Fig. 3: Peripheral SLO & OCT-Angiography

OCT-Angiography: AngioScan Images
OCT-A of the SCP (Fig. 2a) reveals significant widening of the foveal avascular zone (FAZ) and dilatation of the juxtafoveal vessels. A texture rarefaction is present. OCT-A of the DCP (Fig. 2b) shows microaneurysms and vascular congestion.

In Fig. 3, the peripheral SLO fundus image shows laser photocoagulation spots in the peripheral retina. Peripheral OCT-A shows preretinal neovascularization, surrounded by areas of non-perfusion.

In Fig. 4, a 9 x 9 mm panoramic image is reconstructed. The foveal avascular zone is irregular and widened with areas of disruption of the capillary network. Dilatations characteristic of microaneurysms are detectable with extramacular texture rarefaction.
Case 13

Branch Retinal Vein Occlusion (BRVO)

Fig. 1a: The SLO fundus image reveals microvascular abnormalities at the posterior pole.

Fig. 1b: The structural OCT B-scan of a patient with a longstanding superotemporal branch retinal vein occlusion shows cystoid macular edema.

OCT-Angiography: AngioScan Images

- Fig. 2a/2b: OCT-A highlights the well-demarcated regions of absent flow both at the superficial and deeper vascular plexus levels. Note the initial formation of an anastomosis with the deep vascular network and collateral circulation.

- Fig. 3a/3b: The respective En face OCT images of the superficial and deep plexus.

Case 14

Proliferative Diabetic Retinopathy (DR)

Fig. 1a: The SLO image shows rare hypo-reflective lesions corresponding to retinal microaneurysms and small retinal hemorrhages.

Fig. 1b: The structural OCT B-scan shows no relevant morphologic alteration of the macular region.

OCT-Angiography: AngioScan Images

- Fig. 2a: OCT-A of the SCP (Fig. 2a) reveals significant widening of the foveal avascular zone (FAZ) and dilatation of the juxtafoveal vessels. A texture rarefaction is present. OCT-A of the DCP (Fig. 2b) shows microaneurysms and vascular congestion.

- In Fig. 3, the peripheral SLO fundus image shows laser photocoagulation spots in the peripheral retina. Peripheral OCT-A shows preretinal neovascularization, surrounded by areas of non-perfusion.

- In Fig. 4, a 9 x 9 mm panoramic image is reconstructed. The foveal avascular zone is irregular and widened with areas of disruption of the capillary network. Dilatations characteristic of microaneurysms are detectable with extramacular texture rarefaction.
Clinical Cases with OCT-Angiography

AngioScan

Daniela Bacherini
Andrea Sodi
Stanislao Rizzo

Brochure and listed features of the device are intended for non-US practitioners.

More clinical information available online
https://www.nidek-intl.com/education/